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Bertrand Rollin, CCS-2; Malcolm J. Andrews, XCP-4 Recent research has shown that initial conditions have a significant influence on the evolution of a flow 
towards turbulence. This important finding offers a unique opportunity for turbulence control, but also raises 
the question of how to properly specify initial conditions in turbulence models. We study this problem in the 
context of the RT instability. The RT instability is an interfacial fluid instability that leads to turbulence and tur-
bulent mixing. It occurs when a light fluid is accelerated into a heavy fluid because of misalignment between 
density and pressure gradients. The RT instability plays a key role in a wide variety of natural and man-made 
flows ranging from supernovae to the implosion phase of ICF. Our approach is to provide a turbulence model 
with a predicted profile of its coefficients at the appropriate times in accordance with the initial conditions of 
the problem.

The Rayleigh-Taylor (RT) instability [1,2] occurs when a light fluid 
is accelerated into a heavy fluid. At early time, the perturbation’s 

amplitude grows exponentially. Then, significant non-linearities appear 
as vorticity is generated by a baroclinic mechanism. Finally, the two 
fluids mix in a turbulent fashion. Recent research [3,4] has shown 
that initial conditions have a significant influence on the evolution of 
the turbulent RT instability. This characteristic offers an opportunity 
for “turbulence control,” which may result in significant optimization 
for engineering applications such as inertial confinement fusion (ICF) 
[5]. Because traditional turbulence models used for simulating these 
complex problems do not capture initial condition effects, our objective 
is to define a rational basis for “feeding” them with initial coefficient 
values that reflect an initial condition influence. We propose to evolve 
the initial perturbation until the turbulence model hypotheses become 
valid, and then provide the coefficients’ profiles at that time. 

Our current model for predicting the evolution of the RT mixing zone is 
based on Goncharov’s model [6] for single-mode perturbations. We 
compute the evolution of every existing mode of the initial perturbation 
spectrum, then the evolution of the bubble (spike) front is given by the 
envelope of the single-mode heights at all times:  			 
   		  h(t) = max(hk(t))				    (1)

where h(t) is the height of the bubble (spike) front at time t and hk(t)  is 
the height of the bubble (spike) generated by a single-mode initial 
perturbation at time t. The bubble (spike) front velocity is v = dh/dt and 
the bubble (spike) front growth rate is a = h2/4Agh [7].

Turbulence Model Coefficients Profiles for the Rayleigh-Taylor Instability

Figure 1 illustrates how our multimode model behaves on an idealized 
case. Figure 1a displays an initial amplitude spectrum that could result 
from azimuthally averaging the 2D spectrum of an initial perturbation 
interface. Figure 1b shows the height of the bubble front (bold red line) 
as a function of time, as well as the height of a number of single modes 
(light black lines). Using the same color code as in Fig. 1b, Fig. 1c 
shows the velocity, and Fig. 1d shows the growth rate. Since we 
consider an ideal case, without viscosity or surface tension, the initially 
fastest growing mode is the mode corresponding to the largest wave 
number of the initial amplitude spectrum (k = 40 on Fig. 1a). As Figs. 1c 
and 1d show, the fastest growing mode leads the bubble front until  
t ≈ 0.8s, so that the front grows as a single mode bubble. Between  
t ≈ 0.8s and t ≈ 1.75s, modes corresponding to smaller and smaller 
wave numbers lead the bubble front. The natural pace at which the 
modes overtake each other at the front produces a quadratic evolution in 
time (implied in Fig. 1c, shown in Fig. 1d)). As a result of the growth 
rate, Fig. 1d reaches an asymptotic value of about 0.03 between t ≈ 0.8s  
and t ≈ 1.75s. Finally, the growth rate decays slowly after t ≈ 1.75s. 
This decay is due to “missing” modes since our model does not handle 
mode coupling, and there is no mode generation. As the bubble front is 
lead by modes corresponding to smaller and smaller wave numbers, our 
model eventually “runs out” of modes, and the bubble front is eventually 
lead by the mode corresponding to the smallest existing wave number in 
our initial spectrum (k = 14 on Fig. 1a). Since the terminal velocity of a 
single mode is constant, its height then grows linearly, and the quadratic 
growth rate parameter a decays as an inverse function of time. Figure 1 
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shows that our model can reproduce the evolution of a multimode bubble 
(spike) front, but is limited by its inability to generate modes. Figure 2 
reproduces the spectral index study made by Banerjee and Andrews [4] 
with our multimode model. Their 3D MILES simulations predict a late 
time growth rate of a ≈ 0.02–0.03 (Fig. 7b in [4]), as does our 
multimode without mode coupling. This figure illustrates how, for simply 
structured spectra, our model provides a reasonable prediction of the 
late time growth rate, as long as the initial amplitude spectrum is 
sufficiently wide.

We extract turbulence coefficients’ profiles using a two-fluid model [8]. 
The model is based on an idealization of the mixing interface between 
two interpenetrating fluids. Assuming a linear distribution of the 
mixture fraction within the turbulent mixing zone [9], the averaged 
density and velocity at a given altitude z are given by: 
		  r(z) = fh(z)rh + fl(z)rl			   (2)

 		  uz(z) = fh(z)uh + fl(z)ul	 		  (3)

where fh/l is the heavy/light fluid volume fraction. Fluctuating quantities 
at a given altitude are then computed using averages given by equations 
(2) or (3), and bulk values for the heavy fluid or the light fluid [8]. Upon 
substitution of the appropriate terms in the definition of a turbulence 
coefficient, one gets a two-fluid expression for its profile. For example, a 
two-fluid formulation for the mass flux, az = r′u′z /r, is:

	
							       (4)

Since vs, vh, fh and fl  are determined using the multimode model’s 
prediction, the initial profile for parameters such as az  can be assigned.

In conclusion, despite the lack of mode coupling, our modal model 
reasonably captures the growth of the turbulent mixing zone for a simply 
structured and sufficiently wide initial perturbation spectrum. Then 
profiles of turbulence model coefficients can be computed using the 
characteristics of the turbulence mixing zone predicted by our model and 
a two-fluid model. In the future, our predictions will be refined by using 
a multimode model that includes mode coupling, and complimentary 

studies will be made on the turbulence within the turbulent mixing zone 
to characterize the initial time of validity for turbulence model 
hypotheses.

Fig. 1. Model prediction for an idealized 
initial amplitude spectrum.  (a) Initial 
amplitude spectrum, (b) height, (c) 
velocity, and (d) growth rate as a 
function of time. Bold red line: bubbles’ 
front. Light black lines: single mode 
bubbles.

Fig. 2. Application of our model to a 
case found in literature. (a) Initial 
amplitude spectra used by Banerjee and 
Andrews, (b) growth rate predicted by 
our model, to be compared with Fig. 10 
of Banerjee and Andrews [4].
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